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Abstract 

Kinetic equations of the form In[g(cY)/T’“] = ln[AE/+R] + c’ - c”ln E - c”‘(E/T) are 
proposed for the evaluation of activation parameters from non-isothermal experiments. 
The values of c’, c” and cl” have been derived using the already established linear 
dependence of (i) the logarithm of the Arrhenius temperature integral lnp(x) on x 
(= E/RT), (ii) its slope on x-‘, and (iii) its intercept on lnx, respectively. The lnp(x) 
values were computed from the recently proposed series and the closed-form three-term 
approximations. The kinetic parameters computed with the proposed equations show 
better agreement for theoretical TG curves than do the well known methods. The 
equations have equal practical significance in the kinetic analysis of non-isothermal 
processes. 

INTRODUCTION 

Non-isothermal methods have been extensively used for the study of the 
kinetics and mechanism of condensed phase reactions [l]. The temperature 
dependence of many of these reactions has been shown to be Arrhenius- 
type. The Arrhenius equation, k = A emEIRT (where A is the pre-exponential 
factor and E the activation energy of a reaction), is generally used as such 
for the evaluation of activation parameters from isothermal measurements. 
However, in non-isothermal experiments with a linear heating rate 4, 
the integral form of the rate expression becomes Jo” da/f(a) = 
A/+ ST eeEIRT d7’. (The left-hand side of the equation is the conversion 
integral, g(a).) The right-hand side of the rate equation involving 
the exponential integral has no closed-form solutions. If E/RT = 
x, the integral Jle-E’RT dT is transformed into JF (epx/x2) dw, which is 
a special case of the incomplete gamma function J; (e-U/ub) du (where 

* Corresponding author. 

0040-6031/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved 



14 P.M. Madhusudanan et al./Therrnochim. Acta 221 (1993) 13-21 

u =x and b = 2), which has either a series solution [2,3] or a solu- 
tion by numerical integration [4-61. This integral is known as the Arrhenius 
temperature integral which has been generally called the p(x) function [7]. 
The most important generalized series solutions for p(x) are asymptotic 
expansions and Scholmilch series. Computed values of the temperature 
integral p(x), with different values of activation energy E and temperature 
T, are generally employed in non-isothermal kinetic analysis. 

In the present paper we introduce a new series approximation and a 
closed-form three-term approximation for the computation of the Arrhe- 
nius temperature integral, p(x). The dependence of the values of p(x) on 
the energy of activation and reaction temperature has been made use of to 
derive two corresponding kinetic equations for the evaluation of non- 
isothermal data. The validity of the new equations has been confirmed by 

and experimental thermogravimetric curves. the analysis of theoretical 

A NEW APPROXIMATION 

We have proposed [8] 
gamma function Q(x) 

a new series approximation for the incomplete 

=e-x l- 

Xb [ 

b b(b’ - 1) 

(x + b + 1) - (b - 1)(x + 1) . . . (x + b + 1) 

b2(b3 - 1) b3(b4 - 1) 

+ (b - 1)(x + 1). . . (x + b + 2) - (b - 1)(x + 1). . . (x + b + 3) 

b4(b5 - 1) 

+ (b - 1)(x + 1) . . . (x + b + 4) ’ . * 

(_I)“-l)b(j-l)(bj _ 1) 

+ (b - 1)(x + 1). . . (x + b +j) 1 
where b # 1. 

(1) 
The generalized series solution given in eqn. (1) is closely related to the 

Scholmilch approximation [2]. For ease of computation, we also proposed a 
shorter closed-form three-term approximation 

Q(x)=F[l- b 
(b2 + 1) 

(x + b + 1) - (x + 1)(x + 2)(x + b + 1) 1 (2) 
in which the third term represents the approximate sum of all the terms 
beyond the second term of eqn. (1). Substituting b = 2, eqns. (1) and (2) 
become eqns. (3) and (4) respectively, which give the Arrhenius tempera- 
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TABLE 1 

Various approximations for the temperature integral p(x) 

Scholmilch [2] 

P(X)=~[l-&+(X+l;X+2)-(X+l).10(X+3) 

30 148 

+(X+l)...(X+4)-(X+l)...(X+5)+... 1 
Semi-convergent series [8] 

P(~)=~[l-2+~-~+~-~+...] 
X 

Two-term [8] 

,(x,=~[~ 1 
Van Tets [9] 

6 30 

(x+l)...(X+3)+(x+l)...(X+4) 

108 810 

- - (x + 1) . . (x + 5) + (x ’ ’ ’ + 1). . . (x + 6) 1 
Senung and Yang [lo] 

Reich and Stivala [ll] 

P(“)=$[(,i(:;;6)] 

Gorbachev [12] 

,,x,=yJ&) 1 
Zsako [13] 

P(X)=e-‘[(x+2;x-d) 1 
where d = 16/(x2 + 4x + 84) 

Flynn and Wall [14] 

p(x)=G 0.0000035+-- 
[ 

0.99871 1.9848764 

X X2 

+ 4.9482092 11.7850792 +. 
_ 

X3 X4 
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ture integral p(x) 

p(+F I--- 
[ 

2 6 28 

(x+3) (X+l)...(X+3)+(w+l)...(x+4) 

120 496 

- + - (x + 1). . . (x + 5) (x 1). , . (x 6) ’ - ’ + + 1 
p(x)=s [ I--- 2 5 

(x + 3) (x + 1)(X + 2)(x + 3) 1 
(3) 

(4) 

The validity of the proposed approximations for p(x) given in eqns. (3) 
and (4) was tested with reference to the Scholmilch series, the series that 
gives closest agreement to the numerically integrated values. A comparison 
is also made with the other approximations proposed by earlier workers 
[8-141. These approximations and the comparative data for p(x) for a 
typical value of x = 20, are given in Tables 1 and 2 respectively. The In p (x) 

values from our approximation, i.e. the series and three-term, are nearest to 
those of the reference Scholmilch approximation, the deviation being of the 
order of 1.7 X lo-“%. 

LINEARIZATION OF THE p(x) FUNCTION 

The expression for the p(x) function shows that it is a function of E and 
l/T [4-6, 151, i.e. 

p(x) =f@, l/T) 

Because E and l/T separately approximate to linear functions of 
we have tried to establish their combined dependence on lnp(x). 

TABLE 2 

Comparison of lnp(x) from different approximations for x = 20 

(5) 

ln P(X), 
For the 

Approximations -lnp+) % deviation from 
Scholmilch X 10’ 

Scholmilch 26.0829514 
Semi-convergent 26.0830043 
Series 26.0829519 

Three-term 26.08295 18 
Two-term 26.0824362 
Van Tets 26.0829392 
Senung and Yang 26.0829427 
Reich and Stivala 26.0829797 
Gorbachev 26.0867747 
Zsako 26.0847926 
Flynn and Wall 26.0852989 

202.8 
1.9 

1.5 
1975.2 

46.8 
33.3 

108.5 
1465.8 
7059.0 
9000.1 
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TABLE 3 

Values of correlation constants for @ versus l/x and I versus In x plots 

Approximations fl versus l/x (eqn. (7)) I versus In x (eqn. (6)) 

b, b, r 0, a2 r 

Series -1.001928 -1.817191 0.999909 1.427514 -1.884318 0.999918 

Three-term -1.000974 - 1.905622 0.999959 1 dO.5659 - 1.920620 0.999960 

linear relation of lnp(x) and X, i.e. lnp(x) = I + px, the numerical values 
of the theoretical slope, p = (dln~~x)/~), and the intercept, I = 

(lrW(x) - (~~)), f or x = 20(5)100 have been evaluated using the series 
solution (eqn. (3)) and three-term approximation (eqn. (4)). As observed 
earlier [8], it is seen that the slope p is linearly related to x-l and the 
intercept I to In X, which can be expressed in the following forms: 

z=a, fa,lnx (6) 

p = b, + b,/x (7) 

The numerical values of the curve fit constants for the above equations for 
the series and three-term approximation are given in Table 3. The 
correlation coefficients (r) are above 0.9999 for both plots, indicating the 
validity of our assumptions regarding the linear relations, Substituting eqns. 
(6) and (7) in the linear relation of lnp(x) and x 

lnp(x) = a, + a, lnx -t (b, + b,/x)x (8) 

which shows the combined dependence of E and l/T on p(x). Inserting the 
numerical values of a,, a2, b, and b, in eqn. (8) and rearranging, we get the 
following equations for p(x): 

For the series solution 

-lnp(x) = 0.38968 + 1.8843 in x + 1.00193x (9) 

For the three-term approximation 

-lnp(x) = 0.29996 + 1.9206 lnx + 1.00097x (10) 

DISCUSSION 

The Arrhenius temperature integral, p(x) or ~(~/~T~, has been widely 
employed in non-isothermal kinetic analysis by suitable rearrangement 
for linearization. The relation between the conversion integral g(a) = 
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& da/f(a) and the temperature integral p(x) can be represented as 

g(a) = AE/+R [e-x/x + ja(-esy/.x) ~1 
x 

= (AEl+RM4 (11) 

Zsako [4] attempted to simplify this relation by using a logarithm form of 
eqn. (11) 

In g(a) - lnp(x) = ln(AEI4R) (12) 

where 5, is the heating rate and R the gas constant. Thus, the activation 
parameters E and A can be calculated from eqn. (12) if g(a) and p(x) are 
known. 

Introducing eqns. (9) and (10) for In&) in the above relation and on 
transposing, we obtain 

In g(Ly) = ln(AE/$R) - 0.38968 - 1.8843 In x + 1.00193x (13) 

In g(a) = ln(AE/$R) -‘0.29996 - 1.9206 lnx + 1.00097x (14) 

Substituting x = E/RT and R = 8.314 J mol-’ K-l in eqns. (13) and (14), 
yields the final forms of the kinetic equations, eqns. (15) and (16), for the 
series solution and the closed-form three-term approximations respectively 

ln[g(Cy)/T’.8g43] = ln(AE/~R) + 3.6012 - 1.8843 In E - 0.12051(~/~) (15) 

In[g(cY)/Tir’.*n06J = ln(AE/~R) + 3.7678 - 1.9206 In E - O.I2~0(~/~) (16) 

The plot of left-hand side of eqns. (15) or (16) versus reciprocal absolute 
temperature will give linear curves, and E and A can be calculated from the 
slope and intercept respectively. Equations (15) and (16) are similar to the 
equation that we proposed in ref. 8, except for the numerical values of the 
constants c’, c” and c”‘. 

VALIDITY OF THE PROPOSED APPROXIMATIONS/EQUATIONS 

The validity of the two approximations and of eqns. (15) and (16) derived 
from them, was tested by theoretical and experimental thermogravimetric 
data, because TG is one of the most widely used techniques for evaluating 
activation parameters for solid state thermal decomposition reactions. A 
theoretical TG curve was generated for the value of E = 100 kJ mall’, 
A = 1 X lOlo s-’ and heating rate = 10°C min-‘. These values of E, A and 4 
were introduced in a first-order kinetic equation making use of the series 
and three-term approximations. Using a computer, temperature values 
were generated by an iteration method described by us earlier [8] for cy 
values in the range 0.05-0.95 and temperature in the range 370-lOOOK. 
The generated temperature values are identical up to five significant figures 
in all cases for the two approximations. Using these temperature values and 
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TABLE 4 

Comparison of activation energy and correlation coefficients from theoretical TG data 

Equations E/(kJ mol-‘) r Percentage 
deviation from 
theoretical E a 

Equation (15) 99.97 h 0.99999992 0.03 
Equation (16) 99.93 = 0.99999994 0.07 
Coats-Redfern 99.65 h 0.99999990 0.35 

99.65 = 0.99999987 0.35 
McCallum-Tanner 99.00 h 0.99999899 1 .OO 

99.00 = 0.99999896 1 .OO 

a Theoretical value of E = 100 kJ mall’. 
h E values computed using temperatures generated from the series approximation. 
’ E values computed using temperatures generated from the three-term approximation. 

the corresponding LY values, Arrhenius plots were made and activation 
energy was calculated using eqns. (15) and (16). The correlation coefficients 
r for the two plots are 0.99999992 and 0.99999994 respectively, indicating 
perfect linear fits. These values of E and r are given in Table 4. The kinetic 
constants calculated using the newly derived equations, eqns. (15) and (16), 
were also compared with the values obtained from two popular integral 
equations, the Coats-Redfern (CR) [16] and MacCallum-Tanner (MT) 
1151. The computation was made using the same theoretical TG data; the 
results are given in Table 4. It can be seen from this table that eqns. (15) 
and (16) give E values much closer to the theoretical value than do the 
other two equations (CR and MT). The deviations of E from the theoretical 
value are 0.03 % and 0.07 % respectively for eqns. (15) and (16), and 0.35 % 
and 1% respectively for the Coats-Redfern and MacCallum-Tanner 
equations. 

The validity of the proposed equations was confirmed separately by 
analysing the theoretical TG data published by Gyulai and Greenhow [6]. 
Analysis showed that E values obtained from eqns. (15) and (16) are 251.46 
and 251.33 kJ mol-’ respectively. The theoretical value of E = 251.16 
kJ mol-’ [6] further confirms the validity of the assumptions that we em- 
ployed here in the derivation of eqns. (15) and (16). 

COMPUTATION OF KINETIC PARAMETERS FROM EXPERIMENTAL 

TG DATA 

The new kinetic equations, eqns. (15) and (16), were used to analyse the 
experimental data for the single-stage dehydration of ZnC,O, * 2H,O [17], 
the dehydration of CaC,O, - H,O and the decomposition of CaC,,O, to 
CaCO, [18]. 



T
A

B
L

E
 

5 

K
in

et
ic

 
pa

ra
m

et
er

s 
fr

om
 

ex
pe

ri
m

en
ta

l 
T

G
 

da
ta

 
;t %

 
K

in
et

ic
 

D
eh

yd
ra

tio
n 

of
 

D
eh

yd
ra

tio
n 

of
 

D
ec

om
po

si
tio

n 
of

 
F 

eq
ua

tio
ns

 
Z

nC
,O

, 
. 2

H
z0

 
C

aC
,O

, 
* H

z0
 

C
aC

Z
04

 
2 %

 

E 
A

 
r 

E 
A

 
r 

E 
A

 
3 

r 
2 

E
qu

at
io

n 
(1

.5
) 

10
7.

4 
4.

73
7 

x 
1o

’O
 

0.
99

90
 

10
7.

0 
8.

63
8 

x 
10

” 
0.

99
86

 
25

3.
9 

3.
94

3 
x 

10
” 

0.
99

95
 

a 
E

qu
at

io
n 

(1
6)

 
10

7.
3 

3.
68

3 
x 

1O
’O

 
0.

99
90

 
10

6.
9 

6.
78

7 
x 

10
” 

0.
99

85
 

25
3.

5 
2.

85
8 

x 
lO

I 
0.

99
96

 
2 

C
oa

ts
-R

ed
fe

rn
 

10
6.

3 
5.

18
4 

x 
10

”’
 

0.
99

90
 

10
6.

8 
3.

75
7 

x 
10

’”
 

0.
99

83
 

25
0.

9 
1.

04
0 

x 
lO

I 
0.

99
95

 
M

cC
al

lu
m

-T
an

ne
r 

10
9.

8 
5.

85
8 

x 
10

”’
 

0.
99

92
 

10
6.

1 
2.

79
6 

x 
10

”’
 

0.
99

85
 

25
6.

5 
3.

49
1 

x 
10

’”
 

0.
99

95
 

g 

E 
in

 k
J 

m
ol

-’
 

an
d 

A
 i

n 
s-

‘.
 

z j3
 

h Q
 

@
 

2 %
 

?!
 ? !z
 



P.M. Madhusudanan et al./Thermochim. Acta 22J (1993) 13-21 21 

The kinetic parameters calculated using eqns. (15) and (16) and with the 
Coats-Redfern and MacCallum-Tanner equations are given in Table 5. 
The same good agreement as is observed in the case of the theoretical TG 
data is shown. Thus, analysis of theoretical and experimental TG data 
indicates that the two equations derived in this work have equal or better 
applicability for the computation of kinetic parameters from non- 
isothermal processes. 

ACKNOWLEDGEMENTS 

We thank Dy. Director, PPC and Director, VSSC for their kind 
permission to publish this work. 

REFERENCES 

1 W.W. WendIandt, Thermal Analysis, 3rd edn., Wiley, New York, 1986. 
2 0. Scholmilch, Vorlesungen uber hohere Analysis, Vol. 2, Braunschweig, 1874, p. 269. 
3 D. Rainville, Special Functions, MacMillan, New York, 1960, 44. p. 
4 J. Zsako, J. Phys. Chem., 72 (1968) 2406. 
5 V. Satava and F. Skvara, J. Am. Ceram. Sot., 52 (1969) 591. 
6 G. Gyulai and E.J. Greenhow, J. Therm. Anal., 6 (1974) 279. 
7 J. Sestak, Thermochim, Acta, 3 (1971) 150. 
8 P.M. Madhusudanan, K. Krishnan and K.N. Ninan, Thermochim. Acta, 97 (1986) 189. 
9 A. Van Tets, Thermochim. Acta, 17 (1976) 372. 

10 G.I. Senung and R.T. Yang, J. Therm. Anal., 11 (1977) 445. 
11 L. Reich and S.S. Stivala, Thermochim. Acta, 52 (1982) 337. 
12 V.M. Gorbachev, J. Therm. Anal., 8 (197.5) 585. 
13 J. Zsako, J. Therm. Anal., 8 (1975) 585’. 
14 J.H. Flynn and L.A. Wall, J. Res. Natl. Bur, Stand. Sect. A, 70 (1966) 487. 
15 J.R. MacCallum and J. Tanner, Eur. Polym. J., 61 (1970) 1033. 
16 A.W. Coats and J.P. Redfern, Nature (London), 201 (1964) 68. 
17 K. Krishnan, K.N. Ninan and P.M. Madhusudanan, Thermochim. Acta, 89 (1985) 279. 
18 K.N. Ninan and C.G.R. Nair, Thermochim. Acta, 23 (1978) 161. 


